Share Course Ware
Natural Sciences > Mathematics > Complex Analysis
 Complex Analysis  posted by  member7_php   on 4/2/2009  Add Courseware to favorites Add To Favorites  
Abstract/Syllabus
Courseware/Lectures
Test/Tutorials
Further Reading
Webliography
Downloads
More Options
 
Abstract/Syllabus:

COMPLEX ANALYSIS1
 

Douglas N. Arnold2

References:
John B. Conway, Functions of One Complex Variable, Springer-Verlag, 1978.
Lars V. Ahlfors, Complex Analysis, McGraw-Hill, 1966.
Raghavan Narasimhan, Complex Analysis in One Variable, Birkh¨auser, 1985.
 

CONTENTS

I. The Complex Number System.. . . . . . . . . . . . . .  2
II. Elementary Properties and Examples of Analytic Fns. . . . . 3
Differentiability and analyticity.. . . . . . . . . . . .       4
The Logarithm.... . . . . . . . . . . .    6
Conformality.... . . . . . . . . . . . . .    6
Cauchy–Riemann Equations.. . . . . . . . . . . . . . . .   7
M¨obius transformations... . . .   9
III. Complex Integration and Applications to Analytic Fns. . .  11
Local results and consequences.. . . . . . . . . . . .  12
Homotopy of paths and Cauchy’s Theorem.. . . . . . . . . . . .  14
Winding numbers and Cauchy’s Integral Formula. . . . . . . . .  15
Zero counting; Open Mapping Theorem.. . .          17
Morera’s Theorem and Goursat’s Theorem. 18
IV. Singularities of Analytic Functions... . . . 19
Laurent series... . . . . . . . . . . . . 20
Residue integrals... . . . . . . . . . 23
V. Further results on analytic functions... 26
The theorems of Weierstrass, Hurwitz, and Montel. . . . . . . . 26
Schwarz’s Lemma... . . . . . . . .  28
The Riemann Mapping Theorem.. . . . . . . . . .                 29
Complements on Conformal Mapping.. . . . .  31
VI. Harmonic Functions... . . . . . .  32
The Poisson kernel... . . . . . . .   33
Subharmonic functions and the solution of the Dirichlet Problem 36
The Schwarz Reflection Principle.. . . . . . . . . .  39



www.sharecourseware.org   Tell A Friend