Complex Analysis
posted by
member7_php
on 4/2/2009
| Add To Favorites
|
|
|
| |
Abstract/Syllabus:
|
COMPLEX ANALYSIS1
Douglas N. Arnold2
References:
John B. Conway, Functions of One Complex Variable, Springer-Verlag, 1978.
Lars V. Ahlfors, Complex Analysis, McGraw-Hill, 1966.
Raghavan Narasimhan, Complex Analysis in One Variable, Birkh¨auser, 1985.
CONTENTS
I. The Complex Number System.. . . . . . . . . . . . . . |
2 |
II. Elementary Properties and Examples of Analytic Fns. . . . . |
3 |
Differentiability and analyticity.. . . . . . . . . . . . |
4 |
The Logarithm.... . . . . . . . . . . . |
6 |
Conformality.... . . . . . . . . . . . . . |
6 |
Cauchy–Riemann Equations.. . . . . . . . . . . . . . . . |
7 |
M¨obius transformations... . . . |
9 |
III. Complex Integration and Applications to Analytic Fns. . . |
11 |
Local results and consequences.. . . . . . . . . . . . |
12 |
Homotopy of paths and Cauchy’s Theorem.. . . . . . . . . . . . |
14 |
Winding numbers and Cauchy’s Integral Formula. . . . . . . . . |
15 |
Zero counting; Open Mapping Theorem.. . . |
17 |
Morera’s Theorem and Goursat’s Theorem. |
18 |
IV. Singularities of Analytic Functions... . . . |
19 |
Laurent series... . . . . . . . . . . . . |
20 |
Residue integrals... . . . . . . . . . |
23 |
V. Further results on analytic functions... |
26 |
The theorems of Weierstrass, Hurwitz, and Montel. . . . . . . . |
26 |
Schwarz’s Lemma... . . . . . . . . |
28 |
The Riemann Mapping Theorem.. . . . . . . . . . |
29 |
Complements on Conformal Mapping.. . . . . |
31 |
VI. Harmonic Functions... . . . . . . |
32 |
The Poisson kernel... . . . . . . . |
33 |
Subharmonic functions and the solution of the Dirichlet Problem |
36 |
The Schwarz Reflection Principle.. . . . . . . . . . |
39 |
|
|
|
|
Rating:
0 user(s) have rated this courseware
Views:
24272
|
|
|
|
|